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All distributed software architectures
require a mechanism to exchange

data between the nodes of the architec-
ture. A generic term for this class of soft-
ware is middleware. Common Object
Request Broker Architecture (CORBA) is
an open standard for object-oriented
middleware developed by the Object
Management Group, a consortium of
nearly 800 companies. A CORBA-com-
pliant Object Request Broker (ORB) can
facilitate data communication between
dissimilar hardware, dissimilar operating
systems, and modules written in different
languages. CORBA is a Joint Technical
Architecture (JTA) endorsed standard,
and is a part of the Defense Information
Infrastructure (DII) Common Operating
Environment (COE).  

Command and control (C2) systems
must be able to provide decision support
information in response to the battle as it
is taking place and therefore must be
very efficient. The ability of a system to
meet performance requirements depends
heavily on the underlying architecture
selected for the software system.
Middleware is a critical performance
component. Most C2 systems being built
to JTA and DII COE standards have
CORBA as their middleware. There are
many choices of CORBA ORB imple-
mentations, and they can each affect per-
formance differently. The basic question
then is how does the architect or design-
er select the best implementation of a
CORBA ORB given the performance
needs of the system? 

This article summarizes middleware
research resulting in the identification of
10 dimensions of variability in software
architecture that can affect a CORBA
ORB’s behavior for a given system [1].
The results of this research can aid in
determining what factors of a specific
architecture affect performance when
using CORBA. These factors include
aspects of the selected hardware architec-
ture that would favor one CORBA
implementation over another, and details

about how CORBA works that affect the
performance of the architecture. The
understanding of these factors can help
quantify the needs of the architecture,
and in turn help evaluate candidate
implementations of CORBA.   

A secondary benefit of this research is
that knowledge of these factors can be
used to tune existing systems or systems
under construction that have already
selected a CORBA product. Most
CORBA products have parameters that
can be tuned by the system designer to
complement the system’s architecture and
improve performance.  

It Is Like Buying a Car
The analogy to this situation is purchas-
ing an automobile. Some people select a
vehicle based on features or options
without much consideration of how the
vehicle will be used. Many CORBA
ORBs are purchased the same way. This
is possibly because both cars and
CORBA ORBs have extensive marketing
literature focused on features and
options.

A better approach is to perform a
needs analysis to determine which vehi-
cle factors are most important, and then
compare vehicle choices directly using
common units of measure for those fac-
tors. The first step of a needs analysis
would be to determine what the primary
purpose of the vehicle will be. What is
secondary? How many people should it
hold? What else will be carried in the
vehicle? Should it be able to tow a camp-
ing trailer or a boat trailer? The next step
is to select factors for comparison such as
acceleration, gas mileage, towing capaci-
ty, and range. There are a series of stan-
dard units of measure that can be used to
help make this comparison. Acceleration
can be compared using the time to go
from 0 to 60 mph. Fuel efficiency can be
compared using the estimate of mpg.
Towing capacity can be expressed in
terms of both dead weight and tongue
weight. Range is simply the fuel tank size

times the mpg estimate.
How can all of these factors be opti-

mized? Basically, it cannot be done. The
only possible result would be a vehicle that
was not good at anything. The best solu-
tion is to determine which factor is the
most important to the need and optimize
that factor. Fortunately for car buyers,
there is a whole series of generally under-
stood units of measure for comparison.
The factors to consider when selecting
CORBA are not nearly as well under-
stood, and there are few if any generally
accepted units of measure for comparison.

Command and Control
System Needs Analysis
The first step toward selecting a CORBA
implementation should be performing a
rudimentary needs analysis to understand
the constraints on the design of the sys-
tem. While a family vehicle must satisfy
many different needs, often loosely
defined, there is a much better situation
for C2 systems. A C2 system is often
designed to support a single mission or a
closely related group of missions. The
requirements for such a system are gener-
ally clearly stated in terms that are quan-
tifiable and testable. This statement of
need is often referred to in computer sci-
ence terminology as the service policy for
the system.   

To better understand the service poli-
cy for a C2 system, it may be useful to
compare it with the service policy for a
business system. This is done for the sim-
ple reason that most CORBA implemen-
tations are actually designed for the busi-
ness environment. A rudimentary under-
standing of this environment is important
to selecting a CORBA implementation for
C2 systems.  

A typical service policy at a bank
might say: “Ninety-five percent of the
transactions must be processed within 10
seconds.” Notice that there is no stated
requirement for the other 5 percent, and
that the time constraint is fairly loose and
could be easily met by several architecture
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configurations. A bank’s service policy
would most likely be derived from statisti-
cal analysis of marketing data. It would
show customer arrival rate and how long
customers are willing to stand in line, or
how long they are willing to stand in front
of an ATM while waiting for the transac-
tion to be authorized. Cost per transaction
seems to permeate many of the calcula-
tions. The bank is looking to reduce the
cost per transaction without losing cus-
tomers.

The bank’s service policy might seem
very foreign to someone used to working
with C2 systems. A service policy for a C2
system might be stated: “All transactions
must be processed within 80 milliseconds
(msec) while using no more than 50 per-
cent of available processing capacity.” This
statement is different from the bank’s serv-
ice policy in three important ways. All
transactions are covered, not just most of
them. The time constraint is far shorter.
And perhaps most importantly, a built-in
reserve capacity has been stated.  

The cost  reasonableness for these sys-
tems is not based on a per transaction
basis, but rather the cost of regrets if the
mission fails due to an inefficient compu-
tational suite. The advantage the C2 sys-
tem designer has over the business system
designer is that the focus can be on opti-
mizing the system to process a single
transaction. That transaction does not
even have to be a typical one. It may be the
one that is most time-critical or has the
highest use of compute power. This is an
advantage because the designer can break
down that transaction into its component
parts and find the processing bottlenecks
without having to consider arrival rate sta-
tistics. These component parts include the

processing steps within the CORBA trans-
action. 

Components of the CORBA
ORB Transaction
The basic building block in CORBA is the
CORBA object. A CORBA object models
a real-world object and consists of the data
and the methods that it may invoke. The
object’s public interface is through the
CORBA Interface Definition Language
(IDL). The purpose of the IDL is to hide
the underlying object’s implementation
details. Any client of the object can use
this interface to invoke the methods of the
object without knowing any of the details
of the implementation, the platform it is
on, or the location of the object [2]. There
are IDL implementations for Ada, C++,
JAVA, Smalltalk, and several other lan-
guages.

The heart of CORBA is the ORB.
The ORB acts as the middleware compo-
nent that implements the conceptual bus
between the client and the servant. The
ORB ensures delivery of the client’s
request, while hiding the location and
implementation details from the client.
Additionally, in its broker role, if there are
multiple server components that can per-
form the method, the ORB performs a
load balancing function between them [3].
ORBs are optimized and tested thorough-
ly resulting in the virtual elimination of
many tedious, error-prone aspects of creat-
ing and managing distributed applica-
tions, while increasing the portability and
reusability of the service components [4].

While the ORB is far more complicat-
ed than the simple illustration in Figure 1,
it contains the principal components
involved in the transaction. For more

detail and a look at the entire CORBA ref-
erence model, check out the Object
Management Group’s Web site at
<www.omg.org>. The general flow of an
ORB transaction consists of the following
steps. The client object invokes a method
call on the servant as if it were performing
the call directly to another object. The
IDL Stub is the public representation of
that method and intercepts the call. The
ORB core performs the data conversion
functions, the brokering function, and the
communications function. The IDL skele-
ton represents the client to the servant
method call.

The CORBA IDL uses the concepts of
stubs and skeletons as the glue between
the client and servants respectively, and
the ORB. Stubs provide either a strongly
typed static invocation interface or a more
weakly typed dynamic invocation inter-
face, that is used to marshal the client data
into the ORB’s common packet-level rep-
resentation of the data. The skeleton does
the reverse by taking the packet-level rep-
resentation and demarshals it back into
typed data that is meaningful to the ser-
vant.

This stub/skeleton approach hides the
complexity of the low-level communica-
tion between the client and the server and
facilitates the interaction between modules
that may have been coded in different lan-
guages and between dissimilar hardware
representations of the data. An IDL com-
piler for the language of the component
automates the transformation between the
CORBA IDL definitions and the target
programming language. By performing
this automated step, the IDL compiler
also greatly reduces the potential for
inconsistencies between the client stubs
and the server skeletons. Additionally, the
compiler eliminates common sources of
network programming errors and provides
opportunities for automated compiler
optimizations [5] and [6].

The CORBA ORB Core provides the
brokering role as well as all the communi-
cation facilities for sharing resources
among processes. The core translates the
logical address for the method call pre-
sented to it by the client into a physical
address and performs all the steps required
to ship the data to the corresponding
ORB core on the server. That portion of
the core performs the other half of the
communications protocol and delivers the
information to the skeleton. Some ORB
cores are optimized to know that if the
called servant is on the same computer,
many of the communications steps can be
skipped. 
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Figure 1: Generalized Flow of a CORBA Transaction
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Dimensions of Variability
The length of time to perform an ORB
transaction varies greatly with the imple-
mentation of the ORB, how it is tuned,
and the architecture it runs on. In order to
compare ORB implementations, the archi-
tect or designer must first look at the archi-
tecture of the C2 system. How distributed
is it? How many components are there?
How fast are the Local Area Networks and
Wide Area Networks? What are the dis-
tances traveled? How fast are the servers?
How many processors are there? Where are
the expected bottlenecks in the architec-
ture? 

These are all aspects of the architecture
that can affect the performance of an ORB.
Various ORBs will also respond differently
to various architecture situations. To make
an intelligent selection of an ORB, the
architect or designer must understand all
the factors that will affect the performance
of the ORB, and which factors can be
tuned to reduce their effect. In addition,
the long-term effect of the tuning choices
must be considered with regard to the sys-
tem’s maintainability, flexibility, and scala-
bility.

During this research, more than 15
dimensions of variability were identified.
Only 10 of these are discussed here. The
others such as which language, operating
system, and compiler, have less affect and
can easily be held constant for the purpos-
es of this evaluation. The remaining 10 will
be discussed either independently or in
combination. They are discussed roughly
in the order that can cause the most impact
on the transaction performance. Each is
followed by some advice on how that fac-
tor can affect the choice of an ORB imple-
mentation.

Grain, Bandwidth, and
Distance Combined
The first three dimensions of variability are
addressed together to show the interplay,
then addressed separately to show how
they each affect the architecture’s perform-
ance.   

Communication delays are calculated
as a function of bandwidth, distance, and
data packet size. The reason is that while
the distance determines when the first bit
arrives at the destination, the bandwidth
determines when the nth (last) bit arrives.
The architect must choose a grain size that
maximizes the combination of the distance
and bandwidth. On the surface, it would
seem a simple problem that as the band-
width increases, so should the grain size. It
is much more complicated than that. 

For example, you want to ship a 1
Mbit file across the United States and
receive a reply. At 64 Kbps, about 50 per-
cent faster than a typical home modem, it
takes nearly 16 seconds to get the data
sent. The 30-msec latency delay for the
distance does not add much. Today’s stan-
dard ATM rate is 622 Mbps (OC-12)1,
with 5 Gbps (OC-96) already in use. At
622 Mbps it takes only 1.6 msec to deliv-
er the message, so the 30 msec latency
delay to wait for the reply ends up taking
95 percent of the time. As bandwidth
increases, the time-to-reply for this exam-
ple asymptotically approaches 30 msec
[7]. 

There are other problems that the
designer must face in this decision, such as
buffer size, efficiency of the computation
operation at each end, as well as the time

required to checkpoint the data to perma-
nent storage. From this description, it is
easy to see why the time to perform the
transaction is a function of the object’s
grain size, the distance traveled, and the
bandwidth of the circuit.

Object Grain
Grain refers to the size and layout of the
data object being sent to the servant. The
size, type of data, and layout of the data
can each have an effect on transaction effi-
ciency. Most of the computation time
expended during the ORB transaction is
applied to the marshalling and de-mar-
shalling of the data. If the data type is a
complex record consisting of a mixture of
data types, the impact is higher. Large
grained data objects also impact the data
transport time, especially if the bandwidth
is low [6]. 

So what? If your grain size is
large/complex, look for an ORB with effi-
cient marshalling and de-marshalling for
the language you intend to use.

Communications Bandwidth
Bandwidth is described in terms of the
clocking mechanism of the path and ulti-
mately relates to the bit density of the data
to be passed. Bandwidth can vary by several
orders of magnitude with a corresponding
affect on transaction performance. For a
given distance traveled and a given data
packet size, the time it takes to deliver that
packet is a function of the bandwidth of the
communications path. 

So what? Take advantage of high
bandwidth by finding a CORBA imple-
mentation that efficiently handles large
data objects.

Distance Traveled
With the advent of giga-bit networks, we
have transitioned from being bandwidth
capacity constrained to being latency con-
strained [8]. This fact requires a change in
thinking about how much data should be
shipped at once. With low-speed net-
works, the bandwidth drove the decisions
on object size. Now the distance traveled
can cause the biggest difference in per-
formance. The speed of electrons through
a packet-switched network is about two-
thirds the speed of light. Use 1msec for
every 200 miles as a rule of thumb. If you
are doing a method call on a server on the
other side of the country, you have 30
msec of latency for the round trip before
you add in any of the other performance
factors. 

So what? For short distances, optimize
for an ORB that efficiently handles high
volumes of transactions. 

Dynamic vs. Static Invocation
Deciding how to invoke the method call
also affects the efficiency of the transac-
tion. As stated earlier, static invocation is
strongly typed and dynamic invocation is
weakly typed. Any Ada programmer
knows that strong typing is a good thing
and weak typing is not, so this should be
an easy choice. However, this line of rea-
soning ignores one of CORBA’s real
strengths: the ability to hide the implemen-
tation details of the distributed environ-
ment from the programmer. Some of those
implementation details include in what

“Philosophically, it can
easily be seen that any
length of chain has a

weakest link. Likewise,
there is always a 

bottleneck in any process.
One of the key roles of

the software system 
architect is to understand,

be able to detect, and
manipulate the location of

the bottleneck.”
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programming language the invoked
method is coded, and what operating sys-
tem is running on that server. 

Dynamic invocation allows you to
make calls for service at runtime without
prior knowledge of language or data for-
mat requirements of the called service
[9].  Static invocation makes little or no
changes to the data object prior to ship-
ping it, and requires little or no change
prior to presentation to the servant.
Obviously, this technique will improve
transaction performance, but at the cost
of flexibility. Static invocation can be
used if the language, compiler, and oper-
ating system (and hardware) are known
to be the same on both client and server. 

So what? If using static invocation,
optimize for a CORBA ORB that effi-
ciently handles your data types.

Number of Processors —
Number of Threads
As the cost of a processor continues to
come down and as the architecture of the
servers and the operating system allows,
the number of processors in a typical C2
system continues to increase. Often 20
or more, and even up to 256 processors
can be found in today’s servers. Parallel
processing of the ORB transactions
greatly reduces the queuing affect at each
stage of the processing; therefore, the
time required for the transaction is also a
function of the number of processors.
The number of processors can sometimes
exceed the number of threads. 

So what? Look for a CORBA ORB
that works well with a context-switching
operating system. 

Modern operating systems permit
multiple threads of control within the
same session. Like the number of proces-
sors, the number of threads can change
the queuing affects at each stage of the
transaction; therefore, the time to per-
form the transaction is also a function of
the number of threads [10]. The number
of threads often exceeds the number of
processors. 

So what? Look for a multi-thread
capable ORB that can efficiently manage
a thread pool (including protection
against priority inversion).

Backplane Speed
The discussion on backplane speed is
subtly different than bandwidth.
Multiprocessor-capable servers use a
high-speed (to extremely high-speed, i.e.
6 GHz) bus, generally referred to as a
backplane, to facilitate communication
between the processors. Like bandwidth,

the speed of the backplane affects the
time to transfer data between processors.
When CORBA is used to communicate
between processors within the same serv-
er, the time delays between processing
stages are a function of the speed of the
backplane. A server with a high back-
plane speed can communicate with
much larger packets while not requiring
an IP-type protocol (such as CORBA’s
Internet Inter-ORB Protocol), and
therefore is far more efficient than a
communications link with the same rate.
In these cases, the efficiency of the ORB
Core becomes the limiting factor. 

So what? Look for a CORBA with an
efficient broker, and one that is designed
to adapt the protocol to the mode of
communication.

Number of Servers —
Normal Hashing or Perfect
Hashing?
The more typical CORBA transaction is
between two machines, a client and a
server. Today’s C2 systems often have
several servers optimized for different
operations: a communications server, a
mission server, a database server, and a
presentation server. The architecture may
also include a combination of thin
clients and thick clients. These architec-
tures are referred to as N-tiered architec-
tures. 

In N-tier architectures, it is quite
often found that the transaction process
is further distributed, such that the ORB
transaction can occur over three or more
machines, for example: client, presenta-
tion server, and data server. The time
delays occurring during the transaction
are then a function of the number of
servers the transaction is spread across. A
higher number of servers complicates
matters for the broker. Logical address
resolution can become more difficult. 

The broker uses a process known as
normal hashing to dynamically calculate
the route to the server. In a statically
configured architecture, the designer can
choose to short-cut this process by using
a technique referred to as perfect hashing
[4]. This process uses pre-calculated
lookup tables to determine the route. Be
cautioned though, this technique elimi-
nates one of the principal advantages of
CORBA: the flexibility to dynamically
choose which of several servers will per-
form the method invocation as a way of
doing load balancing. If the reduced flex-
ibility is acceptable, be aware that the use
of perfect hashing also increases the

maintainability cost by requiring recal-
culation of the hashing tables every time
the architecture is changed. 

So what? If you have a fixed number
of servers with fixed addressing, look for
an ORB that allows perfect hashing.

Questions for the CORBA 
ORB Salesman
Armed with this new information about
the factors to consider when selecting a
CORBA ORB, you are ready to confront
the ORB salespeople. Here are some sam-
ple questions you could ask:
• When I tested your competitor’s prod-

uct using a 7216 Byte packet size, we
recorded an average one-way transac-
tion time of 9.3241msec. Can you
beat that?

• Do I have to use normal hashing or
can I use perfect hashing?

• My entire system will be coded in Ada
95. What speed improvement can I
expect using static invocation instead
of dynamic invocation?
Here are some responses that would

indicate you have a sales representative
who knows the product and understands
the implications of the alternatives:
• Was this a simple data structure or a

complex one? What speed processor
were you using? How many proces-
sors? How far apart were they? What
was the speed of the backplane?

• Yes we support perfect hashing, but do
you realize that you may get a minimal
performance gain at the cost of less
flexibility and more maintenance?

• The improvement will only be signifi-
cant if you are using large-grained
complex record types, and you run the
risk of future software failure given an
operating system upgrade on portions
of the architecture.

Conclusions
Performance and flexibility are old rivals
in computer architecture. Usually, design
decisions made to achieve flexibility are
detrimental to performance and vice versa.
All of the decisions facing the architect
therefore come down to how to best bal-
ance the needs of both goals. 

Philosophically, it can easily be seen
that any length of chain has a weakest link.
Likewise, there is always a bottleneck in
any process. One of the key roles of the
software system architect is to understand,
be able to detect, and manipulate the loca-
tion of the bottleneck. Manipulating the
location of the bottleneck is relatively
straightforward: adding or taking away
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processors here or bandwidth there. In the
case of CORBA for C2 systems, the archi-
tect must do the following:
• Understand the architectural and per-

formance needs of the system.
• Understand the dimensions of variabili-

ty within that envelope to select the crit-
ical factors for comparison purposes.

• Apply the above to the selection of a
CORBA ORB implementation that
can be effectively optimized for that
architecture.
What quickly became evident during

this research was that in the age of
gigaflop computers, the time it takes to
send a message across a LAN, approxi-
mately 1 msec, is considered an eternity.
Since these communications are con-
trolled by, facilitated by, and in most
cases are conducted on behalf of the mid-
dleware, its performance becomes para-
mount.u
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